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A quick overview of SDN evolution
in Google data center networks
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Google Networking Innovations
Our distributed computing infrastructure required networks that did not exist
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Five Generations of Networks for Google scale
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+ Enables 40G to hosts
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❯  Commodity Hardware  ❯  Little buffering

❯ Tiny round trip times

❯  Massive multi-path

❯  Latency, tail latency as important as bandwidth

❯  Homogeneity, protocol modification much easier

❯  Common infrastructure across Google apps and 
Google Cloud Platform

Characteristics of Data Center Networks
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B4: [Jain et al, SIGCOMM 13] BwE: [Jain et al, SIGCOMM 15]

B4: Google's Software Defined WAN
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Confidential & ProprietaryGoogle Cloud Platform 12

Waves of Cloud Computing



Google Cloud Platform 13

Virtualization delivers capex savings to enterprise DCs

Cloud 1.0

Last Decade
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Cloud 1.0

Public cloud frees enterprise from private HW infrastructure

Scheduling, load balancing primitives, “big data” query processing

Cloud 2.0Cloud 1.0

HW on 
Demand

Now
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Cloud 1.0 Cloud 2.0

Serverless compute, actionable intelligence, and machine learning

Not data placement, load balancing, OS configuration and patching

Cloud 3.0

Compute,
not servers

The Third Wave of Cloud Computing
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Amdahl’s lesser known law: 
1Mbit/sec of IO for every 1 Mhz of computation in parallel computing

Amdahl’s lesser known law: 

1Mbit/sec of IO for every 1 Mhz of computation in parallel computing

An unbalanced data center means:

• Some resource is scarce...limiting your value

• Other resources are idle...increasing your cost

Substantial resource stranding [Eurosys 2015] if we cannot schedule at scale

Why Balance Matters @ Building Scale
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Compute 
Slice

Compute 
Slice

Flash

NVM

64*2.5 Ghz
server

100k+ IOPS
100 us access
PB’s storage

1M+ IOPS
10 us access
TB’s storage

100 Gb/s

50k servers→ 5 Pb/s Network??

Based on Amdahl’s observation, we might need a 5 Pb/s network
• Even with 10:1 oversub → 500Tb/s datacenter network
• Every building needs more bisection than the Internet

Datacenter 
Network

Bandwidth @ Building Scale
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To exploit future NVM, we need ~10 usec latency
• Even for Flash, we need 100 usec latency
• Or, expensive servers sit idle while they wait for IO

Latency @ Building Scale
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PB’s storage
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10 us access
TB’s storage10 us latency

Datacenter 
Network
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Cannot take down a XX MW building for maintenance
• New servers always added; older ones decommissioned… with zero service impact
• Network evolves from 1G → 10G → 40G → 100G → ???

Availability @ Building Scale

Compute 
Slice

Compute 
Slice

Flash

NVM

50k servers

Datacenter 
Network
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Making the Network Disappear!

Software Defined Networking enables the 
network to disappear, driving the next wave of 
computing



 

So, why do we need Telemetry & Analytics in DC Fabrics?
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5+

10+

20+

# of fabric 
architectures in 
production

kinds of switches 
as part of fabrics in 
production

# consumers per 
production fabric

} Need Sensors, Software and Systems that help
• perform network design and modeling 
• perform topology, configuration and routing verification
• perform smart analytics for root cause isolation



 

Data Center Fabrics are Complex
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n stage

host stacks: 
virtualization

transport
application

switch stack

1

2

3

4

State is distributed across various 
elements inside and out of the fabric

Complex interaction between the states

Multiple uncoordinated writers of 
state under various control loops

Large: Impossible to humanly observe 
state and react to ambiguity or faults

controller software

Challenges are similar for SDN-centric or traditional protocol-based networks
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Life of a typical Data Center Fabric

OPERATE (Apps and SLAs)
• Define application SLAs
• Measure SLAs and traffic characteristics
• Feed stats to TE, enforcers, PCR schedulers

OPERATE (Apps & SLA)

CONNECT (Routing)
• Design connectivity policies
• Create the intended configuration
• Push configuration to devices

CONNECT (routing, reachability)

BUILD (Initial Topology)
• Design the network topology
• Model the intended topology
• Populate (deploy, wire-up) DC floor

BUILD (init topology)
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Safety, Correctness and Visibility in a DC Fabric

• Define application SLAs
• Measure SLAs and traffic characteristics
• Feed stats to TE, enforcers, PCR schedulers

OPERATE (Apps & SLA)

• Create connectivity policies & config
• Push configuration to devices 
• Verify routing consistency

CONNECT (routing, reachability)

BUILD (Initial Topology)

• Design & model the network topology
• Populate (deploy, wire-up) DC floor
• Verify deployed topology against intent

BUILD (init topology)
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Compounded by Scale

10,000+ 
switches per fabric**

3.5 Billion
searches per day

30,000 burst
updates within 1 min**

300 hours
of video uploaded every minute

10 Million + 
routing rules per fabric**

0.25Million+ 
links per fabric**

SLA
& app visibility

BUILD
& topology

CONNECTIVITY
& routing

**Typical numbers seen in large data center fabrics



 

Systems to Enable Safety, Correctness & Visibility
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Topology Verification

To continually verify that what is 
deployed is what was intended

01.
Route Consistency

To verify routing state 
consistency between 
controllers and data plane 

 
02.

Traffic Characteristics
**
To verify host-granular 
reachability and measure traffic 
characteristics

 
03.

SLA
& app visibility

BUILD
& topology

CONNECTIVITY
& routing

**The analytics system described here focuses primarily on the host-level reachability 
and packet-loss characterization of app2app communication



 

01. Topology Verification at Scale
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How do we verify that what has been 
deployed and wired up matches 
intended topology

in a 10,000+ node / 250,000+ links fabric



 

n stage
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1

2

3

4

Generate probe traffic from Hosts
This is not switched like production traffic 

Don’t rely on just destination-based routing
Source Route: Ensures targeted full coverage

Analytics App: Takes all this data generated and 
localize connectivity problems

Read in the intended model of the fabric
Generate a topology to verify against

01. Topology Verification at Scale

Simultaneous Detection of Topological faults within a minute of occurrence
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How do we verify consistency between 
configured policy, routing state and 
forwarding state

in a fabric with 10M+ rules and detect & isolate 
loops & black holes quickly

02. Routing Consistency Verification at Scale
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1
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4

Map: Create a network slice by destination subnet by 
picking rules relevant to that subnet against a shard 
of the full set

Reduce: Construct a directed forwarding graph and 
verify properties such as loop freedom and reachability

At every subsequent routing update, only 
analyze incremental updates

Generate snapshot of the routing state by 
recording route change events

SDN Controller
Route Snapshot}

Rule Shard 1 Rule Shard n…
M M M…
R R R

M

R …

Report Subnet 1 Report Subnet m…

02. Libra: Routing Consistency Verification at Scale

Detection of Loops & Holes within 1ms of occurrence in a 10K Node Network
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How do we measure host-level 
reachability and app-level traffic 
characteristics comprehensively

across all host-pairs and all traffic classes with 
varying SLA & TE needs

03. App-level SLA measurements at Scale
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Exercise src2dest and dest2src paths through 
entire host-fabric-host SW stack

Structured rotation of probes across all hosts & 
traffic queues for full coverage

Correlate probe loss & latency in fwd & rev directions 
across a number of probe sets to localize issues

Randomly pick a subset of hosts and generate 
probes to and from the hosts.

03. App-level SLA measurements at Scale
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Scale and Efficiency
Relatively few probes give significant coverage

Speed and Overhead
Balance #probes & detection time. [O(secs)]1 2
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Figure 1: Frequency

Figure 2: Number

03. App-level SLA measurements at Scale - Results

Detection of reachability problems within minutes of occurrence 



Modeling and Transporting Telemetry Data
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Network equipment
● We’ve discussed a lot of external software telemetry sources...what about data from 

network devices themselves?
● Today, SNMP is often the de facto network telemetry protocol. Time to upgrade!

○ legacy implementations -- designed for limited processing and bandwidth

○ expensive discoverability -- re-walk MIBs to discover new elements

○ no capability advertisement -- test OIDs to determine support

○ rigid structure -- limited extensibility to add new data

○ proprietary data -- require vendor-specific mappings and multiple requests to 
reassemble data

○ protocol stagnation -- no absorption of current data modeling and transmission 
techniques



Network automation has come a long way ...
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per-device 
automation
CLI scripts

expect/ssh

unstructured
text

NMS
CLI 
engine

sshRPC 
API

NMS

automation library

drivers, templates

ssh vendor 
API

NMS

automation framework

ssh vendor 
API

recipes,modules,...

NMS



Toward a vendor-neutral, model-driven world
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Per-vendor tools

EMS 
A

platform-specific tools, 
processes, skills

tools 
B

EMS 
C

vendor 
A

vendor 
B

vendor 
C

Common OSS

EMS 
A

proprietary integrations, 
common interfaces upstream

EMS 
C

operator / 3rd party NMS

vendor 
A

vendor 
B

vendor 
C

Common mgmt APIs

common mgmt model

common management API, 
no proprietary integrations, 
native support on all 
vendors

vendor 
A

vendor 
B

vendor 
C

 NMS



OpenConfig : user-defined models
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● informal industry collaboration among network operators

● data models for configuration and operational state, code written in YANG

● organizational model: informal, structured like an open source project

● development priorities driven by operator requirements

● engagements with major equipment vendors to drive native implementations

● engagement with standards (IETF) and OSS (ODL, ONOS, goBGP, Quagga)

TeraStream

http://datatracker.ietf.org/doc/draft-ietf-netmod-rfc6020bis/
https://github.com/openconfig/public


OSS stack for model-based programmatic configuration

OpenConfig 
models

pyang

pyangbind

python class
bindings

vendor 
A

vendor 
B

vendor 
C

template-based 
translations
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validated, vendor-neutral object representation
bgp.global.as = 15169

bgp.neighbors.neighbor.add(neighbor_addr=124.25.2.1”)

...

interfaces.interface.add("eth0")

eth0 = src_ocif.interfaces.interface["eth0"]

eth0.config.enabled = True

eth0.ethernet.config.duplex_mode = "FULL"

eth0.ethernet.config.auto_negotiate = True

config DB

vendor 
A

vendor 
B

vendor 
C

pybindJSON.dumps(bgp.neighbors)
pybindJSON.dumps(interfaces)

gRPC / 
RESTCONF

vendor neutral

https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/robshakir/pyangbind
https://github.com/robshakir/pyangbind
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configuration data
vendor-neutral, validated

multiple vendor devices

OC 
YANG 
models

configuration
generation

gRPC req

operators

intent API

“drain peering link”

update topology model

gRPC endpoint

Example Configuration pipeline
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Next generation network telemetry:

● network elements stream data to collectors (push model)

● data populated based on vendor-neutral models whenever possible

● utilize a publish/subscribe API to select desired data

● scale for next 10 years of density growth with high data freshness

○ other protocols distribute load to hardware, so should telemetry

● utilize modern transport mechanisms with active development communities
○ e.g., gRPC (HTTP/2), Thrift, protobuf over UDP

www.openconfig.net

http://www.openconfig.net
http://www.openconfig.net


data collector
(fluentd)

OSS stack for model-based streaming telemetry

Platform support for streaming telemetry:

Cisco IOS-XR
github.com/cisco/bigmuddy-network-telemetry-stacks

Juniper JUNOS
github.com/Juniper/open-nti

Arista EOS
vendor 

A
vendor 

B
vendor 

C

message broker (kafka)

TE alerts

applications
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timeseries DB 
(influxDB)

dashboards
(grafana)

OpenConfig 
models

http://www.fluentd.org/
http://github.com/cisco/bigmuddy-network-telemetry-stacks
http://github.com/cisco/bigmuddy-network-telemetry-stacks
http://github.com/Juniper/open-nti
http://github.com/Juniper/open-nti
http://kafka.apache.org/
https://influxdata.com/time-series-platform/influxdb/
http://grafana.org/
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
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That IS a lot of data...

Now that your network infrastructure is richly 
instrumented...how do you extract this information?

We use a RPC framework optimized for encrypted, 
streaming, and multiplexed connections.

...and so can you.

http://grpc.io

http://grpc.io
http://grpc.io


 

❯  Think outside the BOX
❯  Sensors and DATA ANALYTICS are key for building data center networks
❯  HUMANS are (almost) useless, 
❯ OpenConfig, vendor-neutral model-driven config and telemetry
❯ gRPC, a transport mechanism for telemetry data

Key Take-Aways

44
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Google Data Center 360° Tour

https://youtu.be/zDAYZU4A3w0

There are only two ways you can see Jupiter

https://cloudplatform.googleblog.com/2016/03/Google-Data-Center-360-Tour.html
https://cloudplatform.googleblog.com/2016/03/Google-Data-Center-360-Tour.html
https://youtu.be/zDAYZU4A3w0
https://youtu.be/zDAYZU4A3w0
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