
Sensors and Data Analytics in Large
Data Center Networks

Hossein Lotfi
Google Networking

on behalf of Google Technical Infrastructure

A quick overview of SDN evolution
in Google data center networks

DCN Bandwidth Growth
Ag

gr
eg

at
e

tra
ffi

c

Traffic generated by servers in our data centers

Jul ‘08 Jun ‘09 May ‘10 Apr ‘11 Mar ‘12 Feb ‘13 Nov ‘14

50x

1x

Dec ‘13

3

Google Cloud Platform 4

B4

2006

2008

2010

2012

2014
Google
Global
Cache

BwE

Jupiter
gRPC

Freedome

Watchtower

QUIC

Andromeda

Google Networking Innovations
Our distributed computing infrastructure required networks that did not exist

Google Cloud Platform 5

Edge Aggregation
Block 1

Edge Aggregation
Block 2

Edge Aggregation
Block N

Spine
Block 1

Spine
Block 2

Spine
Block 3

Spine
Block 4

Spine
Block M

Server racks with
ToR switches

Five Generations of Networks for Google scale

Google Cloud Platform 6

Saturn

Firehose
1.0

1T

10T

100T

1000T

‘04 ‘05 ‘06 ‘08 ‘09 ‘12

Bisection
B/w

Year

Watchtower

Firehose
1.1

4 Post

Jupiter

Google Cloud Platform 7

Saturn

Firehose
1.0

1T

10T

100T

1000T

‘04 ‘05 ‘06 ‘08 ‘09 ‘12

Bisection
B/w

Year

Watchtower

4 Post

Jupiter

+ Scales out building wide 1.3 Pbps

Firehose
1.1

Google Cloud Platform 8

Saturn

Firehose
1.0

1T

10T

100T

1000T

‘04 ‘05 ‘06 ‘08 ‘09 ‘12

Bisection
B/w

Year

Watchtower

4 Post

Firehose
1.1

Jupiter

+ Enables 40G to hosts

+ External control servers

+ OpenFlow

❯ Commodity Hardware ❯ Little buffering

❯ Tiny round trip times

❯ Massive multi-path

❯ Latency, tail latency as important as bandwidth

❯ Homogeneity, protocol modification much easier

❯ Common infrastructure across Google apps and
Google Cloud Platform

Characteristics of Data Center Networks

Google Cloud Platform 10

B4: [Jain et al, SIGCOMM 13] BwE: [Jain et al, SIGCOMM 15]

B4: Google's Software Defined WAN

Google Cloud Platform 11

10.1.4/24

ToR

VNET: 5.4/16

VNET: 192.168.32/24

VNET: 10.1.1/24

Load
Balancing

DoS

ACLs

VPN

NFV

Google Infrastructure Services

Internal Network

Andromeda Network Virtualization

10.1.3/24

ToR

10.1.2/24

ToR

10.1.1/24

ToR

Confidential & ProprietaryGoogle Cloud Platform 12

Waves of Cloud Computing

Google Cloud Platform 13

Virtualization delivers capex savings to enterprise DCs

Cloud 1.0

Last Decade

Google Cloud Platform 14

Cloud 1.0

Public cloud frees enterprise from private HW infrastructure

Scheduling, load balancing primitives, “big data” query processing

Cloud 2.0Cloud 1.0

HW on
Demand

Now

Google Cloud Platform 15

Cloud 1.0 Cloud 2.0

Serverless compute, actionable intelligence, and machine learning

Not data placement, load balancing, OS configuration and patching

Cloud 3.0

Compute,
not servers

The Third Wave of Cloud Computing

Google Cloud Platform 16

Amdahl’s lesser known law:
1Mbit/sec of IO for every 1 Mhz of computation in parallel computing

Amdahl’s lesser known law:

1Mbit/sec of IO for every 1 Mhz of computation in parallel computing

An unbalanced data center means:

• Some resource is scarce...limiting your value

• Other resources are idle...increasing your cost

Substantial resource stranding [Eurosys 2015] if we cannot schedule at scale

Why Balance Matters @ Building Scale

Google Cloud Platform 17

Compute
Slice

Compute
Slice

Flash

NVM

64*2.5 Ghz
server

100k+ IOPS
100 us access
PB’s storage

1M+ IOPS
10 us access
TB’s storage

100 Gb/s

50k servers→ 5 Pb/s Network??

Based on Amdahl’s observation, we might need a 5 Pb/s network
• Even with 10:1 oversub → 500Tb/s datacenter network
• Every building needs more bisection than the Internet

Datacenter
Network

Bandwidth @ Building Scale

Google Cloud Platform 18

To exploit future NVM, we need ~10 usec latency
• Even for Flash, we need 100 usec latency
• Or, expensive servers sit idle while they wait for IO

Latency @ Building Scale

Compute
Slice

Compute
Slice

Flash

NVM

100k+ IOPS
100 us access
PB’s storage

1M+ IOPS
10 us access
TB’s storage10 us latency

Datacenter
Network

Google Cloud Platform 19

Cannot take down a XX MW building for maintenance
• New servers always added; older ones decommissioned… with zero service impact
• Network evolves from 1G → 10G → 40G → 100G → ???

Availability @ Building Scale

Compute
Slice

Compute
Slice

Flash

NVM

50k servers

Datacenter
Network

Google Cloud Platform 20

Making the Network Disappear!

Software Defined Networking enables the
network to disappear, driving the next wave of
computing

So, why do we need Telemetry & Analytics in DC Fabrics?

21

5+

10+

20+

of fabric
architectures in
production

kinds of switches
as part of fabrics in
production

consumers per
production fabric

} Need Sensors, Software and Systems that help
• perform network design and modeling
• perform topology, configuration and routing verification
• perform smart analytics for root cause isolation

Data Center Fabrics are Complex

22

n stage

host stacks:
virtualization

transport
application

switch stack

1

2

3

4

State is distributed across various
elements inside and out of the fabric

Complex interaction between the states

Multiple uncoordinated writers of
state under various control loops

Large: Impossible to humanly observe
state and react to ambiguity or faults

controller software

Challenges are similar for SDN-centric or traditional protocol-based networks

23

Life of a typical Data Center Fabric

OPERATE (Apps and SLAs)
• Define application SLAs
• Measure SLAs and traffic characteristics
• Feed stats to TE, enforcers, PCR schedulers

OPERATE (Apps & SLA)

CONNECT (Routing)
• Design connectivity policies
• Create the intended configuration
• Push configuration to devices

CONNECT (routing, reachability)

BUILD (Initial Topology)
• Design the network topology
• Model the intended topology
• Populate (deploy, wire-up) DC floor

BUILD (init topology)

24

Safety, Correctness and Visibility in a DC Fabric

• Define application SLAs
• Measure SLAs and traffic characteristics
• Feed stats to TE, enforcers, PCR schedulers

OPERATE (Apps & SLA)

• Create connectivity policies & config
• Push configuration to devices
• Verify routing consistency

CONNECT (routing, reachability)

BUILD (Initial Topology)

• Design & model the network topology
• Populate (deploy, wire-up) DC floor
• Verify deployed topology against intent

BUILD (init topology)

 25￼

Compounded by Scale

10,000+
switches per fabric**

3.5 Billion
searches per day

30,000 burst
updates within 1 min**

300 hours
of video uploaded every minute

10 Million +
routing rules per fabric**

0.25Million+
links per fabric**

SLA
& app visibility

BUILD
& topology

CONNECTIVITY
& routing

**Typical numbers seen in large data center fabrics

Systems to Enable Safety, Correctness & Visibility

26

Topology Verification

To continually verify that what is
deployed is what was intended

01.
Route Consistency

To verify routing state
consistency between
controllers and data plane

02.

Traffic Characteristics
**
To verify host-granular
reachability and measure traffic
characteristics

03.

SLA
& app visibility

BUILD
& topology

CONNECTIVITY
& routing

**The analytics system described here focuses primarily on the host-level reachability
and packet-loss characterization of app2app communication

01. Topology Verification at Scale

27

How do we verify that what has been
deployed and wired up matches
intended topology

in a 10,000+ node / 250,000+ links fabric

n stage

28

1

2

3

4

Generate probe traffic from Hosts
This is not switched like production traffic

Don’t rely on just destination-based routing
Source Route: Ensures targeted full coverage

Analytics App: Takes all this data generated and
localize connectivity problems

Read in the intended model of the fabric
Generate a topology to verify against

01. Topology Verification at Scale

Simultaneous Detection of Topological faults within a minute of occurrence

 29

How do we verify consistency between
configured policy, routing state and
forwarding state

in a fabric with 10M+ rules and detect & isolate
loops & black holes quickly

02. Routing Consistency Verification at Scale

 30

1

2

3

4

Map: Create a network slice by destination subnet by
picking rules relevant to that subnet against a shard
of the full set

Reduce: Construct a directed forwarding graph and
verify properties such as loop freedom and reachability

At every subsequent routing update, only
analyze incremental updates

Generate snapshot of the routing state by
recording route change events

SDN Controller
Route Snapshot}

Rule Shard 1 Rule Shard n…
M M M…
R R R

M

R …

Report Subnet 1 Report Subnet m…

02. Libra: Routing Consistency Verification at Scale

Detection of Loops & Holes within 1ms of occurrence in a 10K Node Network

 31

How do we measure host-level
reachability and app-level traffic
characteristics comprehensively

across all host-pairs and all traffic classes with
varying SLA & TE needs

03. App-level SLA measurements at Scale

 32

1

2

3

4

Exercise src2dest and dest2src paths through
entire host-fabric-host SW stack

Structured rotation of probes across all hosts &
traffic queues for full coverage

Correlate probe loss & latency in fwd & rev directions
across a number of probe sets to localize issues

Randomly pick a subset of hosts and generate
probes to and from the hosts.

03. App-level SLA measurements at Scale

 33

Scale and Efficiency
Relatively few probes give significant coverage

Speed and Overhead
Balance #probes & detection time. [O(secs)]1 2

pr
ob

es
 p

er
 m

in
ut

e

co
ve

ra
ge

coverage # probers

Figure 1: Frequency

Figure 2: Number

03. App-level SLA measurements at Scale - Results

Detection of reachability problems within minutes of occurrence

Modeling and Transporting Telemetry Data

 35

Network equipment
● We’ve discussed a lot of external software telemetry sources...what about data from

network devices themselves?
● Today, SNMP is often the de facto network telemetry protocol. Time to upgrade!

○ legacy implementations -- designed for limited processing and bandwidth

○ expensive discoverability -- re-walk MIBs to discover new elements

○ no capability advertisement -- test OIDs to determine support

○ rigid structure -- limited extensibility to add new data

○ proprietary data -- require vendor-specific mappings and multiple requests to
reassemble data

○ protocol stagnation -- no absorption of current data modeling and transmission
techniques

Network automation has come a long way ...

36

per-device
automation
CLI scripts

expect/ssh

unstructured
text

NMS
CLI
engine

sshRPC
API

NMS

automation library

drivers, templates

ssh vendor
API

NMS

automation framework

ssh vendor
API

recipes,modules,...

NMS

Toward a vendor-neutral, model-driven world

37

Per-vendor tools

EMS
A

platform-specific tools,
processes, skills

tools
B

EMS
C

vendor
A

vendor
B

vendor
C

Common OSS

EMS
A

proprietary integrations,
common interfaces upstream

EMS
C

operator / 3rd party NMS

vendor
A

vendor
B

vendor
C

Common mgmt APIs

common mgmt model

common management API,
no proprietary integrations,
native support on all
vendors

vendor
A

vendor
B

vendor
C

 NMS

OpenConfig : user-defined models

38

● informal industry collaboration among network operators

● data models for configuration and operational state, code written in YANG

● organizational model: informal, structured like an open source project

● development priorities driven by operator requirements

● engagements with major equipment vendors to drive native implementations

● engagement with standards (IETF) and OSS (ODL, ONOS, goBGP, Quagga)

TeraStream

http://datatracker.ietf.org/doc/draft-ietf-netmod-rfc6020bis/
https://github.com/openconfig/public

OSS stack for model-based programmatic configuration

OpenConfig
models

pyang

pyangbind

python class
bindings

vendor
A

vendor
B

vendor
C

template-based
translations

39

validated, vendor-neutral object representation
bgp.global.as = 15169

bgp.neighbors.neighbor.add(neighbor_addr=124.25.2.1”)

...

interfaces.interface.add("eth0")

eth0 = src_ocif.interfaces.interface["eth0"]

eth0.config.enabled = True

eth0.ethernet.config.duplex_mode = "FULL"

eth0.ethernet.config.auto_negotiate = True

config DB

vendor
A

vendor
B

vendor
C

pybindJSON.dumps(bgp.neighbors)
pybindJSON.dumps(interfaces)

gRPC /
RESTCONF

vendor neutral

https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/robshakir/pyangbind
https://github.com/robshakir/pyangbind

Google Cloud Platform 40

configuration data
vendor-neutral, validated

multiple vendor devices

OC
YANG
models

configuration
generation

gRPC req

operators

intent API

“drain peering link”

update topology model

gRPC endpoint

Example Configuration pipeline

 41

Next generation network telemetry:

● network elements stream data to collectors (push model)

● data populated based on vendor-neutral models whenever possible

● utilize a publish/subscribe API to select desired data

● scale for next 10 years of density growth with high data freshness

○ other protocols distribute load to hardware, so should telemetry

● utilize modern transport mechanisms with active development communities
○ e.g., gRPC (HTTP/2), Thrift, protobuf over UDP

www.openconfig.net

http://www.openconfig.net
http://www.openconfig.net

data collector
(fluentd)

OSS stack for model-based streaming telemetry

Platform support for streaming telemetry:

Cisco IOS-XR
github.com/cisco/bigmuddy-network-telemetry-stacks

Juniper JUNOS
github.com/Juniper/open-nti

Arista EOS
vendor

A
vendor

B
vendor

C

message broker (kafka)

TE alerts

applications

42

timeseries DB
(influxDB)

dashboards
(grafana)

OpenConfig
models

http://www.fluentd.org/
http://github.com/cisco/bigmuddy-network-telemetry-stacks
http://github.com/cisco/bigmuddy-network-telemetry-stacks
http://github.com/Juniper/open-nti
http://github.com/Juniper/open-nti
http://kafka.apache.org/
https://influxdata.com/time-series-platform/influxdb/
http://grafana.org/
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public
https://github.com/openconfig/public

 43

That IS a lot of data...

Now that your network infrastructure is richly
instrumented...how do you extract this information?

We use a RPC framework optimized for encrypted,
streaming, and multiplexed connections.

...and so can you.

http://grpc.io

http://grpc.io
http://grpc.io

❯ Think outside the BOX
❯ Sensors and DATA ANALYTICS are key for building data center networks
❯ HUMANS are (almost) useless,
❯ OpenConfig, vendor-neutral model-driven config and telemetry
❯ gRPC, a transport mechanism for telemetry data

Key Take-Aways

44

Google Cloud Platform 45

Google Data Center 360° Tour

https://youtu.be/zDAYZU4A3w0

There are only two ways you can see Jupiter

https://cloudplatform.googleblog.com/2016/03/Google-Data-Center-360-Tour.html
https://cloudplatform.googleblog.com/2016/03/Google-Data-Center-360-Tour.html
https://youtu.be/zDAYZU4A3w0
https://youtu.be/zDAYZU4A3w0

Hossein Lotfi
HosseinL@google.com

References THANK YOU
1. “Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s

Datacenter Network,” SIGCOMM 2015.

2. “Network Detective: Finding network blackholes”, Israel Networking Day 2014.

3. “Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks”, NSDI 2014.

4. “B4: Experience With a Globally-Deployed Software Defined WAN,” SIGCOMM 2013.

5. “Bandwidth Enforcer: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed
Computing,” SIGCOMM 2015.

