
Large (UDP)
Packets in IPv6

Geoff Huston
APNIC

What’s the problem?

What’s the problem?

So what?

Packet Networks like
variable packet sizes

• The	range	of	packet	sizes	supported	in	a	network	
represents	a	set	of	engineering	trade-offs:
• Bit	error	rate	of	the	underlying	media
• Desired	carriage	efficiency
• Transmission	speed	vs	packet	switching	speed

IPv4 Packet Design

FORWARD fragmentation
• If	a	router	cannot	forward	a	packet	on	its	next	hop	due	
to	a	packet	size	mismatch	then	it	is	permitted	to	
fragment	the	packet,	preserving	the	original	IP	header	in	
each	of	the	fragments

IPv4 and the “Don’t Fragment”
bit

If	Fragmentation	is	not	permitted	by	the	source,	then	the	
router	discards	the	packet.	The	router	may	send	an	ICMP	
to	the	packet	source	with	an	Unreacahble code	(Type	3,	
Code	4)

Later	IPv4	implementations	added	a	MTU	size	to	this	
ICMP	message

BUT:	ICMP	messages	are	extensively	filtered	in	the	
Internet	so	applications	should	not	count	on	receiving	
these	messages!

Trouble at the Packet Mill

• Lost	frags	require	a	resend	of	the	entire	packet	–
this	is	far	less	efficient	than	repairing	a	lost	packet
• Fragments	represent	a	security	vulnerability	as	they	
are	easily	spoofed
• Fragments	represent	a	problem	to	firewalls	–
without	the	transport	headers	it	is	unclear	whether	
frags	should	be	admitted	or	denied
• Packet	reassembly	consumes	resources	at	the	
destination

The thinking at the time…

Fragmentation	was	a	Bad	Idea!

Kent,	C.	and	J.	Mogul,	"Fragmentation	Considered	Harmful",	Proc.	
SIGCOMM	'87	Workshop	on	Frontiers	in	Computer	Communications	
Technology,	August	1987

IPv6 Packet Design

• Attempt	to	repair	the	problem	by	effectively	
jamming	the	DON’T	FRAGMENT	bit	to	always	ON
• IPv6	uses	BACKWARD	signalling
• When	a	packet	is	too	big	for	the	next	hop	a	router	
should	send	an	ICMP6	TYPE	2	(Packet	Too	Big)	message	
to	the	source	address	and	include	the	MTU	of	the	next	
hop.

IPv6 Source Fragmentation

What changed? What’s the
same?

• Both	protocols	may	fragment	a	packet	at	the	source
• Both	protocols	support	a	Packet	Too	Big	signal	from	the	
interior	of	the	network	to	the	source
• Only	IPv4	routers	may	generate	fragments	on-the-fly
• IPv6	relies	on	support	for	Extension	Headers	to	support	its	
implementation	of		IP	packet	fragmentation
• But	that	has	its	own	set	of	implications	(See	slide	3)!

What does “Packet Too Big”
mean anyway?

errrrr

It’s a Layering Problem

• Fragmentation	was	seen	as	an	IP	level	problem
• It	was	meant	to	be	agnostic	with	respect	to	the	upper	
level	(transport)	protocol

• But	we	don’t	treat	it	like	that
• And	we	expect	different	transport	protocols	to	react	to	
fragmentation	notification	in	different	ways

What does “Packet Too Big”
mean anyway?

For	TCP it	means	that	the	active	session		referred	to	
in	the	ICMP	payload*	should	drop	its	session	MSS	to	
match	the	MTU	**

In	an	ideal	network	you	should	never	see	IPv6	fragments	
in	TCP!

*	assuming	that	the	payload	contains	the	original	end-to-end	IP	header
**	assuming	that	the	ICMP	 is	genuine

What does “Packet Too Big”
mean anyway?

For	UDP its	not	clear:
• The	offending	packet	has	gone	away!
• Some	IP	implementations	appear	to	ignore	it
• Others	add	a	host	entry	to	the	local	IP	Forwarding	table	
that	records	the	MTU
• Others	perform	a	rudimentary	form	of	MTU	reduction	
in	a	local	MTU	cache

Problems

ICMP	is	readily	spoofed
• ICMP	messages	can	consume	host	resources
• An	attacker	may	spoof	a	high	volume	stream	of	ICMP	
PTB	messages	with	random	IPv6	source	addresses
• An	attacker	may	spoof	ICMP	PTB	messages	with	very	low	
MTU	values

Problems

ICMP	is	widely	filtered
• leading	to	black	holes	in	TCP	sessions

• GET	is	a	small	HTTP	packet
• The	response	can	be	arbitrarily	large,	and	if	there	is	a	path	
MTU	mismatch	the	response	can	wedge

Get Response

Problems

Leading	to	ambiguity	in	UDP
• Is	this	lack	of	a	response	due	to	network	congestion,	
routing	&	addressing	issues,	or	MTU	mismatch?
• Should	the	receiver	just	give	up,	resend	the	trigger	
query,	or	revert	to	TCP?	(assuming	that	it	can)

What did IPv6 do differently?

IPv6	defined	a	minimum	unfragmented packet	size	of	
1,280	bytes:

IPv6 Specification: RFC2460

What did IPv6 do differently?

IPv6	defined	a	minimum	unfragmented packet	size	of	
1,280	bytes:

IPv6 Specification: RFC2460

Bewteen 1280 and 1500

What	should	an	IPv6	host	use	as	a	local	MTU	value?

• If	you	set	it	at	1280	then	you	invite	fragmentation	if	you	
need	to	send	larger	packets,	which	will	risk	EH	loss	on	
fragmented	packets
• If	you	set	it	at	1500	then	you	may	encounter	risks	with	MTU	
mismatch	and	PTB	notification	loss	when	talking	with	a	host	
with	a	smaller	MTU	and	encounter	MTU	Black	Holes

1280 1500

Lets look

• So	if	the	issue	is	the	combination	of	IPv6,	UDP	and	
larger	packets	then	perhaps	we	can	experiment	
with	this
• It’s	called	“the	DNS”	!

• So	we	set	up	an	experiment…
• Response	1	:	131	octets
• Response	2:	1400	octets
• Response	3:	1700	octets

And	set	up	a	name	server	reachable	only	on	IPv6	and	only	
on	UDP

What we expect to see

Size																											Fetched												Failed				Reason

Small	(150	octets) 99% 1% Noise
1160	octets 99% 1% Noise
1400	octets ? ? PTB
1700	octets <52% >48% EH	Loss,

Frag	loss,
PTB

What we saw

Tested Always	Fetched Both Always	Missed

150					 11,719 8,792	(75.02%)	 377	(3.22%) 2,550	(21.76%)

1,160	 2,004 1,353	(67.51%) 5	(0.25%)	 646	(32.24%)

1,400		 9,789 7,374	(75.33%)	 385	(3.93%)	 2,030	(20.74%)

1,425		 1,977 1,313	(66.41%)	 7	(0.35%)	 657	(33.23%)

1,453		 1,987 1,298	(65.32%)	 	 9	(0.45%)	 680	(34.22%)

1,700										11,170 5,859	(52.45%) 172	(1.54%)	 5,139	(46.01%)

1280

1500

What we saw

Tested Always	Fetched Both Always	Missed

150					 11,719 8,792	(75.02%)	 377	(3.22%) 2,550	(21.76%)

1,160	 2,004 1,353	(67.51%) 5	(0.25%)	 646	(32.24%)

1,400		 9,789 7,374	(75.33%)	 385	(3.93%)	 2,030	(20.74%)

1,425		 1,977 1,313	(66.41%)	 7	(0.35%)	 657	(33.23%)

1,453		 1,987 1,298	(65.32%)	 	 9	(0.45%)	 680	(34.22%)

1,700										11,170 5,859	(52.45%) 172	(1.54%)	 5,139	(46.01%)

??

1280

1500

There	is	quite	some	noise	in	this	data	– the	small-size	response	shows	a	21%
loss	rate,	which	is	likely	to	be	due	to	a	combination	of:

DNS	multi-slave	query	engine	 farms
IPv6	Link	Layer	address	manipulation
ICMPv6	Address	unreachable
DNS	timeouts

Unreachables

• Dual	Stack	configurations	hide	a	multitude	of	sins
• And	one	of	these	is	the	use	of	unreachable	IPv6	
addresses	for	DNS	resolvers
• 11,077	distinct	unreachable	IPv6	addresses	!
• Out	of	22,000	distinct	IPv6	/128	addresses

• Which	is	not	quite	as	bad	as	it	looks	– a	number	of	resolvers	
are	“aggressive”	in	their	use	of	/64	interface	identifiers

Filtering the results

• Join	individual	resolver	/128	addresses	into		
common	/64’s
• Only	look	at	resolver	/64’s	that	fetch	either	of	the	
two	low-size	controls
• Which	means	that	the	IPv6	address	is	reachable
• And	the	resolver	will	successfully	resolve	a	glueless
delegation

What we saw:
Size Tested Always	Fetched Both Always	Missed

150								5,433						5,290	(97%)											143	(3%)																		0

1,160												654										651	(99%)															3	(1%)																		0

1400										4,658						4,495	(96%)										133	(3%)																	30	(1%)	

1425														636									619	(97%)	 													5	(1%)	 																12	(2%)

1453														638									609	(95%)	 													6	(1%)	 																23	(4%)

1700											4,686						3,464	(74%)											79	(1%)												1,143	(25%)

1280

1500

What we saw:
Size Tested Always	Fetched Both Always	Missed

150								5,433						5,290	(97%)											143	(3%)																		0

1,160												654										651	(99%)															3	(1%)																		0

1400										4,658						4,495	(96%)										133	(3%)																	30	(1%)	

1425														636									619	(97%)	 													5	(1%)	 																12	(2%)

1453														638									609	(95%)	 													6	(1%)	 																23	(4%)

1700											4,686						3,464	(74%)											79	(1%)												1,143	(25%)

1280

1500

Between 1280 and 1500 the failure rate rises as the
packet size rises.

PTB MTU size distribution

1280

1500

1480

1460 1492

What we saw:
Size Tested Always	Fetched Both Always	Missed

150								5,433						5,290	(97%)											143	(3%)																		0

1,160												654										651	(99%)															3	(1%)																		0

1400										4,658						4,495	(96%)										133	(3%)																	30	(1%)	

1425														636									619	(97%)	 													5	(1%)	 																12	(2%)

1453														638									609	(95%)	 													6	(1%)	 																23	(4%)

1700											4,686						3,464	(74%)											79	(1%)												1,143	(25%)

1280

1500

There is a visible signal here for packets > 1500 octets.

It is not a 48% drop rate, but it is certainly more than 20% over
and above the other packet sizes. There is a definite problem
here with large IPv6 packets.

EH drop? Or something more
mundane?

1,143 IPv6	/64s	consistently	cannot	fetch	a	1,700	
octet	UDP	response
• 331	/64’s generated	ICMP	Fragmentation	reassembly	
ICMP	messages	
• Firewall	front	end	discarding	trailing	fragments

• 61 /64’s	generated	Packet	Too	Big	messages

• 751 failing	/64’s	generated	no	ICMP	messages
i.e.	EH	packet	drop	was	a	maximum	of	16%		in	this	experiment		

What we saw with a 1280 MTU:

Size Tested Always	Fetched Both Always	Missed

150								4,777									4,600	(96%)												177	(4%)																					0

1400										4,662								3,695	(79%)														80	(2%)																	887	(19%)	

1700											4,635							3,429	(74%)														95	(2%)																1,111	(24%)

1280

1500

Dropping the local MTU pushes a further 18% fragmentation drop
into the 1,400 Byte packet

What are we seeing?

Whether	its	EH	drop	of	frag	filtering,	there	is	
something	deeply	concerning	in	these	numbers:
• A	protocol	that	suffers	a	~20%	packet	drop	rate	on	
fragmented	packets	presents	a	problem!
• Hosts	should	use	the	largest	locally	supported	MTU	for	
UDP	(and	use	a	1,220	MSS	for	TCP)
• Applications	should	assume	that	large	IPv6	fragmented	
packets	may	silently	die	in	transit.	They	should	be	
prepared	to	perform	a	rapid	cutover	to	TCP	in	the	event	
of	suspected	packet	loss	in	UDP

• Should	we	revive	draft-bonica-6man-frag-deprecate?

Thanks!

